reading the proposal and receiving permission of the graduate dean, the advisory committee will conduct an oral examination to determine the aspirant’s ability to carry out the proposed research and whether or not this research qualifies as a PhD dissertation. Any essential change in the project requires committee approval. After passing the DAE, the student is known as a candidate for the PhD degree. A candidate must be continuously enrolled in PhD Dissertation for a minimum of 6 hours each semester and 2 hours in the Summer Session until completion of the dissertation or 24 hours of PhD Dissertation have been taken. After this, 2 hours per semester and 1 hour per summer are required. In any case, no less than 24 hours of enrollment for PhD Dissertation will be required. The dissertation may be performed in absentia with the approval of the advisory committee.

Final Dissertation Examination
The student must defend the dissertation before the advisory committee. At least five months must elapse between the DAE and the final examination. The final examination will be open to the public. Invited guests or external examiners may be invited if the committee desires.

Electrical and Computer Engineering (ECE)
Graduate Faculty
Professors: Ward T. Jewell, Hyuck M. Kwon, Glyn Rimmington, M. Ed Sawan (chairperson and graduate coordinator)
Associate Professors: Larry D. Paarmann, Ravindra Pendse, Steven R. Skinner, Asrat Kwon, Glyn Rimmington, M. Ed Sawan (chairperson and graduate coordinator)
Assistant Professors: Coskun Cetinkaya, Sudharman Jayaweera, Fred J. Meyer, Kameswara R. Namuduri

The Department of Electrical and Computer Engineering offers courses of study leading to the Master of Science (MS) and Doctor of Philosophy (PhD) degrees.

Master of Science
Courses of study leading to the MS degree are available with specializations in any of the following five fields: (1) control systems, (2) communications, (3) signal processing, (4) computers and digital systems, and (5) energy and power systems. Details of the MS program can be found under the College of Engineering heading.

Doctor of Philosophy
Courses of study leading to the Doctor of Philosophy (PhD) degree are available with specializations in control theory, communications/signal processing, digital systems and controls, energy and power systems. Details of the PhD program can be found under the College of Engineering heading.

Facilities
Modern electrical engineering laboratories contain facilities for experimental work in areas of instrumentation, control systems, computers and digital systems, electronics, circuits, energy conversion, power electronics, and power quality.

Courses for Graduate/Undergraduate Credit

ECE 577. Special Topics in Electrical and Computer Engineering (1-4). New or special courses presented on sufficient demand. Repeatable for credit. Prerequisite: departmental consent.

ECE 585. Electrical Design Project I (2). 3L. A design project under faculty supervision chosen according to the student’s interest. Prerequisites: COMM 111 and departmental consent. May not be counted toward a graduate electrical major.

ECE 586. Introduction to Communication Systems (4). 3R; 3L. Fundamentals of communication systems; models and analysis of source, modulation, channel, and demodulation in both analog and digital form. Reviews Fourier Series, Fourier Transform, DFT, Probability, and Random Variables. Studies in Sampling, Multiplexing, AM and FM analog systems, and additive white Gaussian noise channel. Additional topics such as PSK and FSK digital communication systems covered as time permits. Prerequisites: ECE 383 and either STAT 471 or IEN 254.

ECE 588. Advanced Electric Motors (3). Advanced electric motor applications and theory. Includes single-phase motors, adjustable speed ac drive applications, brushless and brushless DC motors. Prerequisites: ECE 488 and 492.

ECE 594. Microprocessor Based System Design (4). 3R; 1L. Presents development of microprocessor based systems. Studies interfacing the address bus, data bus, and control bus to the processor chip. Memory systems and I/O devices interfaced to the appropriate busses. Vendor-supplied, special purpose chips, such as interrupt controllers, programmable I/O devices, and DMA controllers, integrated into systems designed in class. Lab gives hands-on experience. Prerequisites: ECE 394, or 238 and 294.

ECE 595. Electrical Design Project II (2). 3L. A continuation of ECE 585. Prerequisites: ECE 585. Will not count toward a graduate electrical engineering degree.

ECE 598. Electric Power Systems Analysis (3). Analysis of electric utility power systems. Topics include analysis and modeling of power transmission lines and transformers, power flow analysis and software, and an introduction to symmetrical components. Prerequisite: ECE 282.

ECE 616. Introduction to Wireless Communications (3). Introduces students to the basic principles and issues related to wireless communications. We will consider not only the basic technical aspects of the wireless communications, but also the market issues, social and cultural impact of the wireless communications, deregulation issues as well as political issues relating to the development and wide popularity of wireless communications. The level of the course will be applicable to junior or senior undergraduates as well as beginning graduate students. Prerequisites: ECE 383, IE 254.

ECE 636. Telecommunications (3). Topics in circuit and packet switching, layered communication architectures, state dependent queues, traffic engineering, call processing, software organization, routing, and common channel signaling. Prerequisite: ECE 586 or departmental consent.

ECE 644. Advanced Digital Lab (2). An open laboratory experience for computer engineering students. Gives the student an opportunity to use state-of-the-art devices and equipment in designing complex digital systems. Will not count towards an electrical engineering degree. Prerequisites: ECE 394 and 594.

ECE 666. Computer Forensics (3). Computer crimes include security violations and unauthorized access and theft of sensitive information. In this course, we discuss procedures for the identification, preservation, and extraction of electronic evidence that can be legally used when a computer crime is committed. From the network perspective, we discuss auditing and investigation of network and host intrusions. Forensic tools and resources for system administrators and information system security officers will also be covered. Legal issues related to computer and network forensics will be discussed. There will be about eight programming-related laboratory exercises in this class. This course is intended for senior undergraduate students and graduate students majoring in ECE and computer science. Prerequisites: ECE 138 and CS 540. In addition, good programming skills in one of the languages (C, C++, or Java), familiarity with the operating systems (UNIX/Windows) are required.

ECE 684. Introductory Control System Concepts (3). An introduction to control system modeling and simulation, dynamic response, feedback theory, stability criteria, and compensation design. Prerequisite: ECE 383.

ECE 688. Power Electronics (4). 3R; 3L. Deals with the applications of solid-state
Presents a quantitative overview of the role of the thyristor in power electronics applications and establishes the theory, characteristics, and protection of the thyristor. Presents controlled rectification, static frequency conversion by means of the DC link-converter and the cyclo converter, emphasizing frequency, and voltage control and harmonic reduction techniques. Also presents requirements of forced commutation methods as applied to DC-DC control and firing circuit requirement and methods. Introduces applications of power electronics to control AC and DC motors using new methods such as microprocessor. Prerequisite: ECE 492.

ECE 691. Integrated Electronics (3).
A study of BJT and MOS analog and digital integrated circuits. Includes BJT, BiMOS, and MOS fabrication; application specific semi-custom VLSI arrays; device performance and characteristics; and integrated circuit design and applications. Prerequisites: ECE 194 and 493 or departmental consent.

The distribution system is a vital contributor to the overall power system function of providing quality electrical service. Provides an overall view of the engineering fundamentals of distribution systems. Discusses distribution system planning and automation, primary and secondary distribution networks. Presents volteage regulation, protection, and reliability. Prerequisite: ECE 598 or departmental consent.

ECE 726. Digital Communication Systems I (3).
Presents the theoretical and practical aspects of digital and data communication systems. Includes the modeling and analysis of information sources as discrete processes; basic source and channel coding; multiplexing and framing; spectral and time domain considerations related to ASK, PSK, DPSK, QPSK, FSK, MSK, and other techniques appropriate for communicating digital information in both base-band and band-pass systems; intersymbol interference; effects of noise on system performance; optimum systems; and general M-ary digital systems in signal-space. Prerequisites: ECE 586 and 754.

ECE 736. Data Communication Networks (3).
Presents a quantitative performance evaluation of telecommunication networks and systems. Includes fundamental digital communications systems review; packet communications; queueing theory; OSI, s25 and SNA layered architectures; stop-and-wait protocol, go-back-N-protocol, and high-level data link layer; network layer flow and congestion control; routing; polling and random access; local area networks (LAN); integrated services digital networks (ISDN); and broad band networks. Prerequisites: ECE 383 or departmental consent.

ECE 737. Wireless Networking (3).
Covers topics ranging from physical layer to application layer in the wireless and mobile networking fields. Explores physical layer issues of wireless communications, wireless cellular telephony, ad-hoc networks, mobile IP and multicast, wireless LAN (IEEE 802.11), security, Bluetooth and WAP, etc. Imparts general knowledge about wireless communication technologies and ongoing research activities. Prerequisite: ECE 736.

ECE 738. Embedded Systems Programming (3).
A study of the requirements and design of embedded software systems. Application of the C programming language in the implementation of embedded systems emphasizing real-time operating systems, interfacing to assembly and high-level languages, control of external devices, task control, and interrupt processing. Prerequisite: ECE 594 or equivalent.

ECE 744. Introduction to VHDL (3).
An introduction to VHSDC hardware description language. Includes different types of modeling techniques using state-of-the-art CAD tools. Covers extensively structural modeling, structural modeling, and data-flow modeling. Design assignments include design and simulation of both combinational and sequential circuits using VHDL. Prerequisites: ECE 138 and 394.

A course in random processes designed to prepare the student for work in communications controls, computer systems information theory, and signal processing. Covers basic concepts and useful analytical tools for engineering problems involving discrete and continuous-time random processes. Discusses applications to system analysis and identification, analog and digital signal processing, data compression parameter estimation, and related disciplines. Prerequisites: ECE 383 and either STAT 471 or IENG 254.

ECE 764. Routing and Switching I (4).
3R; 3L.
An introductory course which studies different hardware technologies, like ethernet and token ring. Discusses VLSM. Introduces different routing protocols. Includes hands-on experience in the ECE department’s routing and switching lab. Prerequisite: ECE 736 or departmental consent.

ECE 765. Routing and Switching II (4).
3R; 3L.
Discussion of different bridging techniques, including SRB, SRB, and DL-SW. Also includes advanced routing protocols, like OSPF and EIGRP, and route redistribution. Includes hands-on experience in the IEEE department’s routing and switching lab. Prerequisite: ECE 764 or departmental consent.

ECE 766. Information Assurance and Security (3).
Provides a detailed study of network design methods. Includes both active and passive filters. Discusses analog filter approximations; covers sensitivity and noise analyses. Prerequisite: ECE 383 and 492.

ECE 782. Digital Signal Processing (3).
Presents the fundamental concepts and techniques of digital signal processing. Time domain operations and techniques include different equations and convolution summation. Covers Z-transform methods, frequency-domain analysis of discrete-time signals and systems, discrete Fourier transform, and fast Fourier transform. Emphasizes the frequency response of discrete-time systems and the relationship to analog systems. Prerequisite: ECE 383 or departmental consent.

ECE 790. Independent Study in Electrical Engineering (1-3).
Arranged individual, independent study in specialized content areas in electrical engineering under the supervision of a faculty member. Repeatable for credit. Prerequisite: departmental consent.

ECE 792. Linear Systems (3).

ECE 797. Computer Application to Power System Analysis (3).
Describes the use of power system component models and efficient computational techniques in the development of a new generation of computer programs facilitating the study and dynamic simulation of electric power systems and informs of methods currently employed in the electric utility industry. Emphasizes algorithms suitable for computer solution of power systems problems such as power flows and system voltages during normal and emergency conditions and transient...
behavior of the system resulting from fault conditions and switching operations. Prerequisite: ECE 598.

ECE 798. Advanced Electric Power Systems Analysis (3). Advanced topics in analysis and operation of electric utility power systems. Topics include faulted system analysis, economic dispatch, generator modeling, power system stability, and system protection. Prerequisite: ECE 598.

Courses for Graduate Students Only

ECE 810. Optical Networks (3). A comprehensive study of fiber optical communication systems, components, and networks. Subjects include modulation, wavelength division multiplexing, dispersion, single mode and multimode fibers, fiber optic components, optical cross-connects, and SONET rings. Prerequisite: ECE 510.

ECE 816. Advanced Signal Processing for Wireless Communications (3). Introduces the role of statistical signal processing in wireless communications and studies various signal processing techniques. Begins with an overview of the fundamentals of wireless communications and physical properties of the wireless channel. Covers topics such as adaptive filtering, interference suppression, space-time processing and MIMO techniques. Corequisites: ECE 726 and 754.

ECE 817. Theory of Detection and Estimation (3). Introduces students to the fundamental ideas of detection and estimation theory. Some of the topics covered will include binary hypothesis testing, potnial signal detection, analysis of optimum detectors, elements of parameter estimation and signal estimation. These ideas are basic to statistical signal processing and communications and transceiver design. Prerequisite: ECE 754.

ECE 826. Digital Communication Systems II (3). Studies modern digital communication systems. Discusses topics such as carrier and symbol synchronization techniques; fading multipath channels; frequency-hopped spread spectrum systems; smart antenna arrays systems; space time codes (STC); space-time block codes (STBC); multi-input multioutput (MIMO); orthogonal frequency division multiplexing (OFDM) systems; and multi carrier code division multiple access (MC-CDMA) communications. Prerequisite: ECE 726.

ECE 836. Computer Performance analysis (3). Teaches the basic concepts in stochastic modeling of systems for analysis and for simulation. Analytic modeling techniques include discrete- and continuous-time Markov chains, queuing theory, and queuing networks, as well as approximate methods based on these techniques. Operational analysis presents non-stochastic, measurement-based perspective to the analysis of computer systems. Also emphasizes discrete-event simulation, a widely-used technique in many areas of performance evaluation. Performance metrics taken from stochastic simulations are fantom variables, and are subject to the same types of statistical analysis as data obtained from real systems. Prerequisites: ECE 754.

ECE 844. Advanced Computer Architecture I (3). Covers advanced architectural subjects—microprogramming, economics of chip design, instruction set performance, and pipelining. Prerequisites: ECE 594 or equivalent.

ECE 845. Adaptive Filters (3). Concerned with estimating a signal of interest or the state of a system in the presence of additive noise, but without making use of prior statistical characteristics of the signal nor the noise. Concerned with the design, analysis, and application of recursive filtering algorithms that operate in an environment of unknown statistics. Content includes least mean-square (LMS) filters, recursive least-square (RLS) filters, and recursive least-squares lattice (LSL) filters. All are adaptive and self-designing. Includes concepts of convergence, tracking ability, and robustness. Prerequisite: ECE 754.

ECE 864. Multi-Service Over IP (4). 3R; 1L. Advanced networking course; deals with challenges and solutions associated with sending voice, video, and data (multi-service) over IP. Includes Telephony signaling, call routing and dial plans, measuring voice quality, voice digitization and coding, quality of service issues, and current research. Handson lab allows students to design, troubleshoot, and test different VOIP scenarios. Prerequisites: ECE 764 and graduate standing in ECE.

ECE 876. MS Thesis (1-6). Graded S/U only. Repeatable for credit toward the MS thesis option up to 6 hours. Prerequisite: prior consent of MS thesis advisor.

ECE 877. Special Topics in Electrical Engineering (3). New or special courses developed by a faculty member. Prerequisite: consent of instructor.

ECE 878. MS Directed Project (1-3). A project conducted under the supervision of an academic advisor for the directed project option. Requires a written thesis or an oral presentation on the project. Graded S/U. Prerequisite: consent of academic advisor.

ECE 882. Speech Digital Signal Processing (3). An introductory study in speech signal generation and digital speech signal processing. Includes speech generation and perception, acoustic phonetics, models of speech signals and speech production, analysis methods of digital speech signals, digital representations of speech signals, short-time Fourier transforms and the application to speech signals, pitch and formant estimation, parametric and nonparametric methods of signal representation, linear prediction methods, speech data compression, some methods of speech synthesis and recognition, and speech signals in the presence of noise. Prerequisites: ECE 754.

ECE 883. Digital Filters (3). A study of digital filter design methods. Includes both IIR and FIR filters. Discusses software and hardware implementations; introduces two dimensional digital filters. Prerequisite: ECE 782 or departmental consent.

ECE 886. Error Control Coding (3). Introduces error control codes, including Galois fields, linear block codes, cyclic codes, Hadamard codes, Golay codes, BCH codes, Reed-Solomon codes, convolutional codes, Viterbi decoding algorithm, Turbo codes, and ARQ protocols. Applies to digital 3G and 4G cellular and satellite communications systems. Prerequisite: ECE 726.

ECE 893. Optimal Control (3). Reviews mathematics relevant to optimization, including calculus of variations, dynamic programming, and other norm-based techniques. Formulates various performance measures to define optimality and robustness of control systems. Studies design methods for various classes of systems, including continuous-time, discrete-time, linear, nonlinear, deterministic, and stochastic systems. Prerequisite: ECE 792.

ECE 894. Advanced Computer Architecture II (3). Vector processors, memory-hierarchy design, input, and output. Prerequisite: ECE 844.

ECE 897. Operation and Control of Power Systems (3). Acquaints electric power engineering students with power generation systems, their operation in economic mode, and their control. Introduces mathematical optimization methods and applies them to practical operating problems. Introduces methods used in modern control systems for power generation systems. Prerequisite: ECE 598.

ECE 960. Advanced Selected Topics in electrical Engineering (1-3). Presents new or specialized advanced topics in engineering. Repeatable for credit Prerequisite: instructor’s consent.

ECE 976. PhD Dissertation (1-16). Graded S/U only. Repeatable for credit. Prerequisite: admission to doctoral aspirant status.

ECE 981. Co-op (1). A work-related placement with a supervised professional
experience to complement and enhance the academic program. Intended for master’s-level or doctoral students in Electrical Engineering. Repeatable for up to 8 hours. May not be used to satisfy degree requirements. Prerequisites: departmental consent and a graduate GPA of at least 3.0. S/U only.

ECE 982. Speech Recognition (3).
Reviews topics of speech digital signal processing and analysis as necessary for a study of speech recognition such as speech signal production and perception; acoustic-phonetic characterization of speech signals; representing speech signals in time and frequency; and linear prediction of speech signals. Studies topics such as vector quantization, pattern comparison and template matching methods, dynamic time alignment or warping, stochastic methods such as hidden Markov models, linear prediction or phonetics as two methods of segmenting speech signals, language or context-dependent models, and small vs. large vocabulary models. Prerequisite: ECE 882 or departmental consent.

ECE 986. Wireless Spread Spectrum Communications (3).
Explains what spread-spectrum communications is and why direct-sequence code-division multiple access (DS-CDMA) spread-spectrum is used for wireless communications. Studies the block diagrams of the IS-95 forward and reverse wireless communication links under multi-path mobile fading environment using analysis techniques and simulation. Analyzes pseudo-noise (PN) signal generation, the band-limited waveform shaping filter, convolutional coding, interleaver, Walsh code orthogonal modulation, Rake finger receivers, non-coherent Walsh orthogonal sub-optimal demodulation, other simultaneously supportable subscribers, and third generation CDMA. Prerequisite: ECE 726.

ECE 990. Advanced Independent Study 1-3).
Arranged individual, independent study in specialized content areas in engineering under the supervision of a faculty advisor. Repeatable toward the PhD degree. Prerequisites: advanced standing and departmental consent.

ECE 993. Large Scale Control Systems 3).
Sensitivity analysis of deterministic and stochastic systems; sources of uncertainty in control systems, e.g., plant parameter variation, time delays, small nonlinearities, noise disturbances, and model reduction; quantitative study of the effects of uncertainties on system performance; low-sensitivity design strategies, state and output feedback design; sensitivity function approach, singular perturbation, and model education techniques; adaptive systems; and near-optimal control. Prerequisite: ECE 893.